Survival analysis of longitudinal microarrays

نویسندگان

  • Natasa Rajicic
  • Dianne M. Finkelstein
  • David A. Schoenfeld
چکیده

MOTIVATION The development of methods for linking gene expressions to various clinical and phenotypic characteristics is an active area of genomic research. Scientists hope that such analysis may, for example, describe relationships between gene function and clinical events such as death or recovery. Methods are available for relating gene expression to measurements that are categorized or continuous, but there is less work in relating expressions to an observed event time such as time to death, response or relapse. When gene expressions are measured over time, there are methods for differentiating temporal patterns. However, methods have not yet been proposed for the survival analysis of longitudinally collected microarrays. RESULTS We describe an approach for the survival analysis of longitudinal gene expression data. We construct a measure of association between the time to an event and gene expressions collected over time. Statistical significance is addressed using permutations and control of the false discovery rate. Our proposed method is illustrated on a dataset from a multi-center research study of inflammation and response to injury that aims to uncover the biological reasons why patients can have dramatically different outcomes after suffering a traumatic injury (www.gluegrant.org).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Longitudinal Biomarkers on Hemodialysis Elderly Survival: A Single Central Study

Objectives: Identifying the factors influencing the survival of hemodialysis patients using a two- stage survival model and longitudinal multivariate in order to provide the therapist with planning to better control elderly hemodialysis patients. Methods and Materials: The study was a historical cohort study of 395 patients over the age of 60 who underwent hemodialysis. Data were collected ove...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

مدل‌سازی توام داده‌های بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی

Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...

متن کامل

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

Analysis of the effects of microarrays on Ahwaz city economy

Today, the huge economic damage of natural hazards, especially of the micro-organisms, to human societies has led the concept of economic sustainability to mitigate the effects of crises to become an important area in crisis management. The purpose of this study was to investigate the role of environmental hazards (effluents) on Ahwaz economy. This research can be considered as a type of applie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2006